Source code for proteuslib.unit_models.pressure_exchanger

###############################################################################
# ProteusLib Copyright (c) 2021, The Regents of the University of California,
# through Lawrence Berkeley National Laboratory, Oak Ridge National
# Laboratory, National Renewable Energy Laboratory, and National Energy
# Technology Laboratory (subject to receipt of any required approvals from
# the U.S. Dept. of Energy). All rights reserved.
#
# Please see the files COPYRIGHT.md and LICENSE.md for full copyright and license
# information, respectively. These files are also available online at the URL
# "https://github.com/nawi-hub/proteuslib/"
#
###############################################################################

# Import Pyomo libraries
from pyomo.common.config import ConfigBlock, ConfigValue, In
from pyomo.environ import (Block,
                           Var,
                           Suffix,
                           NonNegativeReals,
                           Reals,
                           value,
                           units as pyunits)

# Import IDAES cores
import idaes.logger as idaeslog
from idaes.core import (ControlVolume0DBlock,
                        declare_process_block_class,
                        MaterialBalanceType,
                        EnergyBalanceType,
                        MomentumBalanceType,
                        UnitModelBlockData,
                        useDefault)
from idaes.core.util import get_solver
from idaes.core.util.config import is_physical_parameter_block
from idaes.core.util.exceptions import ConfigurationError
from idaes.core.util.initialization import revert_state_vars
from idaes.core.util.tables import create_stream_table_dataframe
import idaes.core.util.scaling as iscale

_log = idaeslog.getLogger(__name__)

[docs]@declare_process_block_class("PressureExchanger") class PressureExchangerData(UnitModelBlockData): """ Standard Pressure Exchanger Unit Model Class: - steady state only """ CONFIG = ConfigBlock() CONFIG.declare("dynamic", ConfigValue( domain=In([False]), default=False, description="Dynamic model flag - must be False", doc="""Indicates whether this model will be dynamic or not, **default** = False. Pressure exchangers do not support dynamic behavior.""")) CONFIG.declare("has_holdup", ConfigValue( default=False, domain=In([False]), description="Holdup construction flag - must be False", doc="""Indicates whether holdup terms should be constructed or not. **default** - False. Pressure exchangers do not have defined volume, thus this must be False.""")) CONFIG.declare("material_balance_type", ConfigValue( default=MaterialBalanceType.useDefault, domain=In(MaterialBalanceType), description="Material balance construction flag", doc="""Indicates what type of mass balance should be constructed, **default** - MaterialBalanceType.useDefault. **Valid values:** { **MaterialBalanceType.useDefault - refer to property package for default balance type **MaterialBalanceType.none** - exclude material balances, **MaterialBalanceType.componentPhase** - use phase component balances, **MaterialBalanceType.componentTotal** - use total component balances, **MaterialBalanceType.elementTotal** - use total element balances, **MaterialBalanceType.total** - use total material balance.}""")) CONFIG.declare("energy_balance_type", ConfigValue( default=EnergyBalanceType.useDefault, domain=In(EnergyBalanceType), description="Energy balance construction flag", doc="""Indicates what type of energy balance should be constructed, **default** - EnergyBalanceType.useDefault. **Valid values:** { **EnergyBalanceType.useDefault - refer to property package for default balance type **EnergyBalanceType.none** - exclude energy balances, **EnergyBalanceType.enthalpyTotal** - single enthalpy balance for material, **EnergyBalanceType.enthalpyPhase** - enthalpy balances for each phase, **EnergyBalanceType.energyTotal** - single energy balance for material, **EnergyBalanceType.energyPhase** - energy balances for each phase.}""")) CONFIG.declare("momentum_balance_type", ConfigValue( default=MomentumBalanceType.pressureTotal, domain=In(MomentumBalanceType), description="Momentum balance construction flag", doc="""Indicates what type of momentum balance should be constructed, **default** - MomentumBalanceType.pressureTotal. **Valid values:** { **MomentumBalanceType.none** - exclude momentum balances, **MomentumBalanceType.pressureTotal** - single pressure balance for material, **MomentumBalanceType.pressurePhase** - pressure balances for each phase, **MomentumBalanceType.momentumTotal** - single momentum balance for material, **MomentumBalanceType.momentumPhase** - momentum balances for each phase.}""")) CONFIG.declare("property_package", ConfigValue( default=useDefault, domain=is_physical_parameter_block, description="Property package to use for control volume", doc="""Property parameter object used to define property calculations, **default** - useDefault. **Valid values:** { **useDefault** - use default package from parent model or flowsheet, **PhysicalParameterObject** - a PhysicalParameterBlock object.}""")) CONFIG.declare("property_package_args", ConfigBlock( implicit=True, description="Arguments to use for constructing property packages", doc="""A ConfigBlock with arguments to be passed to a property block(s) and used when constructing these, **default** - None. **Valid values:** { see property package for documentation.}"""))
[docs] def build(self): super().build() # Pressure exchanger supports only liquid phase if self.config.property_package.phase_list != ['Liq']: raise ConfigurationError( "Pressure exchanger model only supports one liquid phase ['Liq']," "the property package has specified the following phases {}" .format(self.config.property_package.phase_list)) self.scaling_factor = Suffix(direction=Suffix.EXPORT) units_meta = self.config.property_package.get_metadata().get_derived_units self.efficiency_pressure_exchanger = Var( self.flowsheet().config.time, initialize=0.95, bounds=(1e-6, 1), domain=NonNegativeReals, units=pyunits.dimensionless, doc='Pressure exchanger efficiency') # Build control volume for high pressure side self.high_pressure_side = ControlVolume0DBlock(default={ "dynamic": False, "has_holdup": False, "property_package": self.config.property_package, "property_package_args": self.config.property_package_args}) self.high_pressure_side.add_state_blocks( has_phase_equilibrium=False) self.high_pressure_side.add_material_balances( balance_type=self.config.material_balance_type) self.high_pressure_side.add_momentum_balances( balance_type=self.config.momentum_balance_type, has_pressure_change=True) self.high_pressure_side.deltaP.setub(0) @self.high_pressure_side.Expression( self.flowsheet().config.time, doc='Work transferred to high pressure side fluid (should be negative)') def work(b, t): return b.properties_in[t].flow_vol * b.deltaP[t] # Build control volume for low pressure side self.low_pressure_side = ControlVolume0DBlock(default={ "dynamic": False, "has_holdup": False, "property_package": self.config.property_package, "property_package_args": self.config.property_package_args}) self.low_pressure_side.add_state_blocks( has_phase_equilibrium=False) self.low_pressure_side.add_material_balances( balance_type=self.config.material_balance_type) self.low_pressure_side.add_momentum_balances( balance_type=self.config.momentum_balance_type, has_pressure_change=True) self.low_pressure_side.deltaP.setlb(0) @self.low_pressure_side.Expression( self.flowsheet().config.time, doc='Work transferred to low pressure side fluid') def work(b, t): return b.properties_in[t].flow_vol * b.deltaP[t] # Add Ports self.add_inlet_port(name='high_pressure_inlet', block=self.high_pressure_side) self.add_outlet_port(name='high_pressure_outlet', block=self.high_pressure_side) self.add_inlet_port(name='low_pressure_inlet', block=self.low_pressure_side) self.add_outlet_port(name='low_pressure_outlet', block=self.low_pressure_side) # Performance equations @self.Constraint( self.flowsheet().config.time, doc="Pressure transfer") def eq_pressure_transfer(b, t): return (b.low_pressure_side.deltaP[t] == b.efficiency_pressure_exchanger[t] * -b.high_pressure_side.deltaP[t]) @self.Constraint( self.flowsheet().config.time, doc="Equal volumetric flow rate") def eq_equal_flow_vol(b, t): return (b.high_pressure_side.properties_in[t].flow_vol == b.low_pressure_side.properties_in[t].flow_vol) @self.Constraint( self.flowsheet().config.time, doc="Equal low pressure on both sides") def eq_equal_low_pressure(b, t): return (b.high_pressure_side.properties_out[t].pressure == b.low_pressure_side.properties_in[t].pressure) @self.low_pressure_side.Constraint( self.flowsheet().config.time, doc="Isothermal constraint") def eq_isothermal_temperature(b, t): return b.properties_in[t].temperature == b.properties_out[t].temperature @self.high_pressure_side.Constraint( self.flowsheet().config.time, doc="Isothermal constraint") def eq_isothermal_temperature(b, t): return b.properties_in[t].temperature == b.properties_out[t].temperature
[docs] def initialize( self, state_args=None, routine=None, outlvl=idaeslog.NOTSET, solver=None, optarg=None): """ General wrapper for pressure exchanger initialization routine Keyword Arguments: routine : str stating which initialization routine to execute * None - currently no specialized routine for Pressure exchanger unit state_args : a dict of arguments to be passed to the property package(s) to provide an initial state for initialization (see documentation of the specific property package) (default = {}). outlvl : sets output level of initialization routine (default=idaeslog.NOTSET) optarg : solver options dictionary object, if None provided an empty dictionary will be used (default=None) solver : solver object or string indicating which solver to use during initialization, if None provided the default solver will be used (default = None) Returns: None """ # Get loggers init_log = idaeslog.getInitLogger(self.name, outlvl, tag="properties") solve_log = idaeslog.getSolveLogger(self.name, outlvl, tag="properties") # Set solver and options opt = get_solver(solver, optarg) # initialize inlets flags_low_in = self.low_pressure_side.properties_in.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args, hold_state=True) flags_high_in = self.high_pressure_side.properties_in.initialize( outlvl=outlvl, optarg=optarg, solver=solver, state_args=state_args, hold_state=True) init_log.info_high("Initialize inlets complete") # check that inlets are feasible if (value(self.low_pressure_side.properties_in[0].pressure) > value(self.high_pressure_side.properties_in[0].pressure)): raise ConfigurationError( "Initializing pressure exchanger failed because " "the low pressure side inlet has a higher pressure " "than the high pressure side inlet") if (abs(value(self.low_pressure_side.properties_in[0].flow_vol) - value(self.high_pressure_side.properties_in[0].flow_vol)) / value(self.high_pressure_side.properties_in[0].flow_vol) > 1e-4): # flow_vol values are not within 0.1% raise ConfigurationError( "Initializing pressure exchanger failed because " "the volumetric flow rates are not equal for both inlets") else: # volumetric flow is equal, deactivate flow constraint for the solve self.eq_equal_flow_vol.deactivate() # initialize outlets from inlets and update pressure def propogate_state(sb1, sb2): state_dict_1 = sb1.define_state_vars() state_dict_2 = sb2.define_state_vars() for k in state_dict_1.keys(): if state_dict_1[k].is_indexed(): for m in state_dict_1[k].keys(): state_dict_2[k][m].value = state_dict_1[k][m].value else: state_dict_2[k].value = state_dict_1[k].value # low pressure side propogate_state(self.low_pressure_side.properties_in[0], self.low_pressure_side.properties_out[0]) self.low_pressure_side.properties_out[0].pressure = ( self.low_pressure_side.properties_in[0].pressure.value + self.efficiency_pressure_exchanger[0].value * (self.high_pressure_side.properties_in[0].pressure.value - self.low_pressure_side.properties_in[0].pressure.value)) # high pressure side propogate_state(self.high_pressure_side.properties_in[0], self.high_pressure_side.properties_out[0]) self.high_pressure_side.properties_out[0].pressure.value = \ self.low_pressure_side.properties_in[0].pressure.value init_log.info_high("Initialize outlets complete") # Solve unit with idaeslog.solver_log(solve_log, idaeslog.DEBUG) as slc: res = opt.solve(self, tee=slc.tee) init_log.info("Initialization complete: {}".format(idaeslog.condition(res))) # release state of fixed variables self.low_pressure_side.properties_in.release_state(flags_low_in) self.high_pressure_side.properties_in.release_state(flags_high_in) # reactivate volumetric flow constraint self.eq_equal_flow_vol.activate()
def get_costing(self, module=None): self.costing = Block() module.PressureExchanger_costing(self.costing) def calculate_scaling_factors(self): super().calculate_scaling_factors() # scale variables if iscale.get_scaling_factor(self.efficiency_pressure_exchanger) is None: # efficiency should always be between 0.1-1 iscale.set_scaling_factor(self.efficiency_pressure_exchanger, 1) # scale expressions if iscale.get_scaling_factor(self.low_pressure_side.work) is None: sf = iscale.get_scaling_factor(self.low_pressure_side.properties_in[0].flow_vol) sf = sf * iscale.get_scaling_factor(self.low_pressure_side.deltaP[0]) iscale.set_scaling_factor(self.low_pressure_side.work, sf) if iscale.get_scaling_factor(self.high_pressure_side.work) is None: sf = iscale.get_scaling_factor(self.high_pressure_side.properties_in[0].flow_vol) sf = sf * iscale.get_scaling_factor(self.high_pressure_side.deltaP[0]) iscale.set_scaling_factor(self.high_pressure_side.work, sf) # transform constraints for t, c in self.low_pressure_side.eq_isothermal_temperature.items(): sf = iscale.get_scaling_factor(self.low_pressure_side.properties_in[t].temperature) iscale.constraint_scaling_transform(c, sf) for t, c in self.high_pressure_side.eq_isothermal_temperature.items(): sf = iscale.get_scaling_factor(self.high_pressure_side.properties_in[t].temperature) iscale.constraint_scaling_transform(c, sf) for t, c in self.eq_pressure_transfer.items(): sf = iscale.get_scaling_factor(self.low_pressure_side.deltaP[t]) iscale.constraint_scaling_transform(c, sf) for t, c in self.eq_equal_flow_vol.items(): sf = iscale.get_scaling_factor(self.low_pressure_side.properties_in[t].flow_vol) iscale.constraint_scaling_transform(c, sf) for t, c in self.eq_equal_low_pressure.items(): sf = iscale.get_scaling_factor(self.low_pressure_side.properties_in[t].pressure) iscale.constraint_scaling_transform(c, sf) def _get_stream_table_contents(self, time_point=0): return create_stream_table_dataframe( { "HP Side In" : self.high_pressure_inlet, "HP Side Out" : self.high_pressure_outlet, "LP Side In" : self.low_pressure_inlet, "LP Side Out" : self.low_pressure_outlet, }, time_point=time_point) def _get_performance_contents(self, time_point=0): t = time_point return { "vars" : { "Efficiency" : self.efficiency_pressure_exchanger[t], "HP Side Pressure Change" : self.high_pressure_side.deltaP[t], "LP Side Pressure Change" : self.low_pressure_side.deltaP[t], }, "exprs" : { "HP Side Mechanical Work" : self.high_pressure_side.work[t], "LP Side Mechanical Work" : self.low_pressure_side.work[t], }, "params" : { }, }